Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chen, Chi-Hua (Ed.)Mobile sensing data processed using machine learning models can passively and remotely assess mental health symptoms from the context of patients’ lives. Prior work has trained models using data from single longitudinal studies, collected from demographically homogeneous populations, over short time periods, using a single data collection platform or mobile application. The generalizability of model performance across studies has not been assessed. This study presents a first analysis to understand if models trained using combined longitudinal study data to predict mental health symptoms generalize across current publicly available data. We combined data from the CrossCheck (individuals living with schizophrenia) and StudentLife (university students) studies. In addition to assessing generalizability, we explored if personalizing models to align mobile sensing data, and oversampling less-represented severe symptoms, improved model performance. Leave-one-subject-out cross-validation (LOSO-CV) results were reported. Two symptoms (sleep quality and stress) had similar question-response structures across studies and were used as outcomes to explore cross-dataset prediction. Models trained with combined data were more likely to be predictive (significant improvement over predicting training data mean) than models trained with single-study data. Expected model performance improved if the distance between training and validation feature distributions decreased using combined versus single-study data. Personalization aligned each LOSO-CV participant with training data, but only improved predicting CrossCheck stress. Oversampling significantly improved severe symptom classification sensitivity and positive predictive value, but decreased model specificity. Taken together, these results show that machine learning models trained on combined longitudinal study data may generalize across heterogeneous datasets. We encourage researchers to disseminate collected de-identified mobile sensing and mental health symptom data, and further standardize data types collected across studies to enable better assessment of model generalizability.more » « less
-
Chen, Chi-Hua (Ed.)Magnetic particle tracking is a recently developed technology that can measure the translation and rotation of a particle in an opaque environment like a turbidity flow and fluidized-bed flow. The trajectory reconstruction usually relies on numerical optimization or filtering, which involve artificial parameters or thresholds. Existing analytical reconstruction algorithms have certain limitations and usually depend on the gradient of the magnetic field, which is not easy to measure accurately in many applications. This paper discusses a new semi-analytical solution and the related reconstruction algorithm. The new method can be used for an arbitrary sensor arrangement. To reduce the measurement uncertainty in practical applications, deep neural network (DNN)-based models are developed to denoise the reconstructed trajectory. Compared to traditional approaches such as wavelet-based filtering, the DNN-based denoisers are more accurate in the position reconstruction. However, they often over-smooth the velocity signal, and a hybrid method that combines the wavelet and DNN model provides a more accurate velocity reconstruction. All the DNN-based and wavelet methods perform well in the orientation reconstruction.more » « less
An official website of the United States government
